Molecular Minerals on Titan

The Acetylene Series

Morgan L. Cable, Tuan Vu, Helen Maynard-Casely, Mathieu Choukroun and Robert Hodyss

1 May 2018

TITAN

An organic chemist's paradise

Lakes and Seas of Methane, Ethane

Remnants of Ridges (Karst)

Titan Surface Processes

Study the pieces to understand the whole

Figure by M. Malaska

Titan Laboratory Experiments

Tackling Titan's surface chemistry, one experiment at a time

Benzene-Ethane Co-Crystal

Benzene-Ethane Co-Crystal

The first discovered Titan mineral

Is this co-crystal unique, or can other Titan molecules do the same thing?

3:1 Benzene:Ethane Ratio

Acetylene Loves to Form Co-Crystals

Can acetylene form co-crystals under Titan-like conditions?

Acetylene and Ammonia *Another co-crystal?*

Evidence of Cryovolcanism

- Acetylene is one of the most abundant solids produced via photochemistry on Titan
 - Detected in the atmosphere by INMS¹ and on the surface by Huygens GC-MS²
- Ammonia may also exist on Titan's surface today
 - The origin of Titan's nitrogen-rich atmosphere is most likely ammonia ice^{1,3}
 - Mixing could occur via cryovolcanism or other surface processes^{4,5}

- 1) Waite et al., 2005, Science, 308, 982-986.
- 2) Niemann et al., **2010**, *JGR*, 115, E12006.
- 3) Mandt et al., **2014**, Astrophys. J. Lett., 788, L24, 1-5.
- 4) Lopes et al., **2013**, *JGR*, 118, 416-435.
- 5) Nelson et al., 2009, Icarus, 199, 429-441.

Acetylene and Ammonia

New features in Raman

Acetylene and Ammonia *Co-crystal is stable up to 115 K*

Acetylene and Ammonia

Evidence for expansion of the co-crystal upon heating

Benzene and Ethane

High thermal expansion

Acetylene and Ammonia

Stable when exposed to hydrocarbon fluvial and pluvial events

Acetylene and Ammonia

Co-crystal still forms from fluvial deposition via acetylene-saturated ethane slurry

Acetylene Loves to Form Co-Crystals

Can acetylene form other co-crystals under Titan-like conditions?

Acetylene and Benzene

Preliminary evidence

Acetylene and Benzene Preliminary evidence Benzene Benzene and acetylene, 130 K Acetylene Intensity 3250 3350 3400 3200 3300 500 1000 1500 3500 2000 2500 3000 4000 Raman Shift (cm⁻¹)

Raman Shift (cm⁻¹)

Acetylene and HCN

The beginnings of an acetylene series . . .

Species	Formula	Precipitation Rate (x 10 ⁵ molecules·m ⁻² ·s ⁻¹)
Hydrogen cyanide	HCN	1300
Butane	C ₄ H ₁₀	540
Acetylene	C_2H_2	510
Acetonitrile	CH ₃ CN	44
Carbon dioxide	CO ₂	13
Benzene	C_6H_6	10

Acetylene and HCN

The beginnings of an acetylene series . . .

Acetylene and HCN

The beginnings of an acetylene series . . .

Titan Laboratory Experiments: Conclusions

Learning what makes Titan tick

- Organic co-crystals may be abundant on Titan, and may assume the role of minerals on Earth.
- A series of acetylene-based molecular minerals may exist on Titan.
- Co-crystals may be responsible for surface material characteristics such as particle size, dissolution rate, structural hardness, and resistance to erosion.
- Differences in physical or mechanical properties may also lead to chemical gradients, which life could potentially exploit.

What does this mean for the Dragonfly Concept?

Detection of co-crystals or their effects on the surface

- **DraMS:** Ratios of small organics consistent with co-crystals (ethane/benzene, acetylene/ammonia)
- **DraGNS**: Elemental abundances consistent with co-crystals
- **DraGMet:** Differences in relative humidity of methane to ethane due to ethane being entrained within co-crystalline structures
- **DragonCam:** Enhanced erosion or slopes consistent with smaller-than-anticipated grain sizes (due to recrystallization); evidence of terrain that has undergone volumetric expansion (possibly due to thermal expansion of co-crystal reservoirs)

Acknowledgements Thanks to all the "Titan-ium Rock Stars"

- Rob Hodyss
- Tuan Vu
- Mike Malaska
- Helen Maynard-Casely
- Mathieu Choukroun
- Pat Beauchamp
- NASA Astrobiology Institute
- NASA Solar System Workings
- Australian Nuclear Science and Technology Organisation

